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Abstract 

This paper describes an experiment in which parallel routing 
is performed on a medium grained hypercube parallel proces- 
sor having 64 processing elements. Each node is a complete 
32-bit computer with 128 K-bytes of memory and is con- 
nected to the other nodes via a direct hypercube interconnec- 
tion network. A new parallel routing algorithm was devel- 
oped to exploit this parallel structure. It is a three step algo- 
rithm consisting of a global routing step, a boundary crossing 
placement step, and a detailed routing step. All steps can be 
performed in parallel. When applied to a standard benchmark 
it was able to route 95 % of the wires. The algorithm was 
also executed on a large mainframe computer using the same 
benchmark. The execution time was compared to that for the 
hypercube. The hypercube was about three times as fast. 

1 Introduction 

The routing of a collection of nets (sets of points) in a cellular 
grid, is one of the most computationaly difficult problems that 
one encounters in the design of VLSI circuits, PCB boards, 
and gate arrays. Maze routing, a technique originated by Lee 
in [l] to solve this problem, produces high quality results at 
the cost of long execution times and high storage requirements 
on serial computers. Channel routing is a routing algorithm 
that constrains the paths to predefined channels in an attempt 
to reduce the high computational requirements. It can also 
give good results if the number and location of the nets to 
be routed match the location and size of of the predefined 
channels. Usually channels are defined by the intervening 
space between previously placed modules. The quality of the 
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final layout is dependant on this prior placement. The paral- 
lelism inherent in both of these routing algorithms could be 
exploited by a parallel computer to provide either shorter ex- 
ecution times or a higher quality result. This paper describes 
a hybrid channel-maze routing algorithm suitable for parallel 
processing. The algorithm is executed on a hypercube paral- 
lel processor and a large mainframe and the execution times 
are compared. 

The problem of wire routing involves finding a path be- 
tween members of a net on a cellular grid. The grid may 
represent the area of a VLSI chip, a gate array or a PCB 
board. Finding the best layout is, in general, a difficult (NP- 
complete) problem, that is further complicated by the con- 
straints of a particular technology, such as restrictions in via 
position and adjacency of certain types of wires. Practical al- 
gorithms used to solve the wire routing problem use heuristic 
techniques with polynomial complexity that lead to near op- 
timal solutions. The quality of the routing produced by such 
algorithms is evaluated by total wire length, maximum length 
of a net, number of vias used and overflow count (unroutable 
nets). 

Maze routing, a simplification of the general wire routing 
problem, is a technique for finding the shortest path between 
two points in a rectilinear grid. The basic algorithm originated 
by Lee in [l] involves three main steps: 

L Wavefront Expansion 
During this step each point in the grid is labeled with 
the length of the shortest path from the source to the 
point. At each expansion step the wavefront consists 
of labeled points, equidistant from the source, with ad- 
jacent free neighbors not yet labeled. The expansion 
consists of labeling these adjacent neighbors to create 
a new wavefrom. Obstacles such as previously routed 
nets constrain the expansion of the wavefront. Wave- 
front expansion continues until the target point has been 
reached or there are no more grid points to expand. 

l Backtrace 
This step traces the shortest path, along expanded grid 
points, from target to source. The path is labeled as a 
new obstruction to the routing of subsequent nets. 
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0 Cleanup 
In this step all expanded grid points that are not part of 
the new path are relabeled as free points to be used in 
the routing of other nets. 

The maze routing algorithm is simple and offers two major 
advantages over other routing techniques. First, it guarantees 
that a source to target path will be found if one exists. Second, 
maze routing is flexible in the sense that routing paths can be 
optimized to achieve certain objectives, such as low via usage 
or low via congestion. These advantages come at the expense 
of long execution times and large storage requirements. Long 
execution times are due to the worst case O(L*) time com- 
plexity of the wavefront expansion step for wires of length 
L, and the fact that only a single net can be routed at a time. 
Large storage requirements are due to the grid representation. 
Furthermore, despite the maze routing algorithm’s guaranteed 
path finding ability, there are no guarantees that all nets will 
be routed, as the routing of a net may be blocked by a pre- 
viously routed net. Despite this shortcoming, maze routing 
lends itself well to the use of specialized parallel hardware to 
reduce execution time by exploiting the inherent parallelism 
of the wavefront expansion step. The following section ex- 
amines some representative parallel hardware accelerators for 
maze routing. 

2 Parallel Architectures for Maze 
Routing 

Due to the two dimensional nature of the maze routing prob- 
lem the most common processor configuration proposed for 
parallel maze routing hardware has been that of the two di- 
mensional mesh of processors. However other architectures, 
such as raster pipeline subarrays have also been used [2]. 
Most approaches to the parallelization of maze routing aim 
to reduce the worst case time complexity of the time consum- 
ing wavefront expansion step from O(L*) to O(L). 

Examples of two dimensional meshes are the L-machine [3] 
and the SAM-machine [4]. Both of these machines are fine 
grained architectures in which a simple processor node, em- 
bedded in a large mesh of similar nodes, is assigned to mark 
each grid position, The maze routing is implemented with a 
high ratio of communication to computation at each proces- 
sor and low average processor utilization. The Wire Routing 
Machine (WRM) [5] possesses a more powerful node proces- 
sor and a smaller mesh and so can not afford the approach 
to maze routing taken by the L and SAM machines. Instead, 
to take advantage of the power of the node processor, the 
WRM uses a two phase routing algorithm. During the first 
phase, the routing grid is divided into cells which contain a 
number of grid points. A global routing from cell to cell is 
then determined. In the second.phase, line track wiring is 
made between grid points within the global route. 

The NCUBE is an example of a general purpose par- 
allel computer with a hypercube processor interconnection 
topology which can accomodate up to 1024 nodes in a lo- 
dimensional hypercube. A 4dimensional hypercube is shown 

Figure 1: A 4dimensional hypercube. 

in Figure 1. Each node is a powerful custom 32-bit micropro- 
cessor with 128 K-bytes of memory and the ability to perform 
floating point arithmetic [6]. The nodes are capable of a peak 
performance of 2 MIPS and 0.5 MFLOPS. The connection 
between the nodes is by dedicated point-to-point bit-serial 
DMA channels. The hypercube is managed by a host proces- 
sor (an Intel 80286). Our experiments were performed using 
a 64 node version of the NCUBE, the NCUBE/six. We have 
implemented a simple three step maze routing algorithm on 
the NCUBE/six with significant speedup over the same algo- 
rithm running on a large mainframe. Furthermore, due to the 
power and general purpose nature of the node processors, it 
is possible to implement a routing algorithm for the NCUBE 
with a considerable degree of sophistication in order to im- 
prove routing quality or to adapt the algorithm to a specific 
technology. The speed and flexibility make the NCUBE hy- 
percube both a practical and a cost-effective solution to the 
maze routing problem. 

3 Hypercube Maze Routing Algorithm 

One of the most important aspects in parallel algorithm design 
is the decomposition of the problem so that it maps efficiently 
onto the parallel architecture. Typically, this requires that the 
mapping does not result in the undue loading of a subset of the 
processing nodes, as this imbalance would degrade the overall 
performance of the algorithm. The decomposition should also 
minimize the ratio of interprocessor communication time to 
the computation time within the processors, as this will result 
in high efficiency for the overall computation. Unfortunately, 
there is no optimum solution to the decomposition of the maze 
routing problem. 

To decompose the maze routing problem we have chosen 
the most obvious approach, which is to divide the grid into 
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as many square regions as there are node processors, N. If 
the grid is A square units in area, and there are N = 2d 
nodes, where d is the dimension of the hypercube used, then 
each node will be responsible for a partition or cell of the grid 
containing 4 square units. At the edges of each cell there are 
crossings which connect the cell to its adjacent cells. Each 
edge has a fixed capacity of crossings in which nets can be 
routed. A node keeps the number of crossings available at 
the eastern and southern boundaries of the cell assigned to it. 
Given this decomposition of the routing problem the parallel 
routing algorithm consists of the following steps: 

1. Global routing. 

2. Boundary crossing pIacement. 

3. Detailed maze routing. 

Each of these steps will be described in detail in the sections 
that follow. The speedup of the algorithm over a conventional 
maze routing algorithm rests on the fact that the above steps 
can all be performed in parallel. 

As noted, a 2-dimensional mesh may be mapped onto a hy- 
percube connected parallel computer such as the NCUBE, and 
the parallel routing algorithm described above implemented. 
The algorithm does not make any use of the hypercube in- 
terconnection topology beyond that of a 2dimensional mesh, 
however the preliminary work described here is intended to 
set the stage for further experimentation to develop algorithms 
that utilize the full power of the hypercube interconnection 
scheme. 

3.1 Global Routing 

The first phase of the routing algorithm is a global routing 
to assign nets to routing regions (cells) rather than detailed 
grid points. A global routing phase should increase the rout- 
ing quality by globally optimizing net placement [7]. Giobal 
routing also serves as the first step in the decomposition of 
the routing problem into N independent routing problems. 
This phase requires communication among adjacent proces- 
sors to perform the routing and to update the values of the 
edge capacities. 

The global routing phase is performed under the following 
assumptions: 

a all nets consist of two points (source-target points), 

l all nets can be wired within their minimum global bound- 
ing rectangle. 

The fist assumption is a simplification of the general multi- 
point net routing problem, and will be relaxed iu later work. 
The second assumption relies on the fact that in practice most 
nets are routable near their minimal lengths, and do not detour 
much beyond the minimum bounding rectangle [8]. In all 
cases the area enclosed by the global minimum bounding 
rectangle is always greater than or equal to that of the actual 
miuimum bounding rectangle (see Figure 2). 
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Figure 2: Routing grid showing cell boundaries. 

If we wish to connect grid points A and B , shown in 
Figure 2, that reside in a global rectangle of n units in the z- 
direction and m units in the y-direction, there are NR possible 
minimum global length routes from the cell containing point 
A to the cell containing point B, where G is given by 

To explore these routes and find the one with the least bound- 
ary crossing cost, a global expansion phase is performed, 
using global routing messages, that is analogous to the wave- 
front expansion step of maze routing. A global routing mes- 
sage consists of seven fie1d.s. these are: 

The net number identifies which net a global route mes- 
sage belongs to. 

The source processor indicates where the message orig- 
inated from. 

The destination or target processor indicates where an 
expansion message should terminate. 

The direction gives the direction of the destination pro- 
cessor in relation to source processor. The direction has 
a field to specify the a-direction, which can have a value 
of east or west, and a field for the y-direction, which can 
have a value of north or south. 

The roure bit vector maintains a record of the direction, 
z or y, in which the message is advanced at each pro- 
cessor. The bit indicated by the bit position portion of 
the message is set in the route bit vector to “1” if the 
message is advanced in the z-direction and “0” if the 
message is advanced in the y-direction. 

The bitposition identifies the current position in the route 
bit vector, it is also a measure of how far, in global cells, 
a message is from its origin. 



l The route cost keeps a running total of the cost incurred 
by the message at each boundary crossing. The cost 
of crossing a cell boundary during global expansion is 
computed as an inverse exponential function of the edge 
capacity of the boundary. 

A message also has a rype associated with it. The two types 
of messages used in the global routing phase are expansion 
and backtrace. 

The processor responsible for the cell in which the source 
point of the net resides initiates the global expansion phase 
by initializing the fields of a global expansion message and 
sending the message to its neighboring processors contained 
within the the minimum global bounding rectangle. On the 
reception of an expansion message a processor compares the 
source portion of the message with its processor location to 
determine if it is the target processor. If the processor is not 
the intended destination of the message, it adjusts the fields 
of the message before advancing the expansion message to its 
neighbors within the global bounding rectangle. If a processor 
receives an expansion message for a net whose source does 
not have either an z or y coordinate in common with the 
processor’s location it waits for another message for that net 
to arrive from the other direction, z or y, before advancing 
the message with least cost. Once the target processor has 
been reached by an expansion message from both the z and 
y directions, the backtrace phase is initiated for the least cost 
message. 

The global backtrace phase consists of retracing the path 
taken by the least cost expansion message from the source to 
the target processor. To accomplish this, the direction portion 
of the message is replaced with the direction of the source 
processor in relation to the the target processor. The route bit 
vector, scanned in the opposite direction to that used during 
expansion, is used to determine in which direction, x or y, to 
move in at each processor. The backtrace message traverses 
the path from the target processor to the source processor 
utilizing the route bit vector, the direction and the bit position 
to direct its course. At each cell boundary along the backtrace 
path crossings used by the net are claimed by reducing the 
value of the edge capacity of the boundary by one. 

The global expansion phase generates ME messages given 
by, 

ME=2mn-m-n. (2) 

‘The backtrace phase generates MB messages given by, 

MB=m+n-2, (3) 

The total number of messages, MG, generated for the global 
routing of a two point net is, thus 

MG=ME+MB=2(mn-1). (4) 

Besides the transmission time, each message has associated 
with it a certain amount of computation time which causes its 
transmission and arises from its reception. If we assume that 
any computation time that does not arise from the trausmit- 
ting and receiving of messages is negligible in comparison 

with computation time that does, the number of messages 
generated is a relative measure of the time spent during the 
global routing phase. 

Each processor is responsible for the global routing of nets 
whose source points are contained within the processor’s cell. 
A processor initiates the global routing of a net until all nets 
for which it is responsible have been routed. This happens si- 
multaneously in all processors. Although significant speedup 
is achieved by this parallel global routing scheme, it is possi- 
ble that during the backtrace phase a backtrace message may 
arrive at a particular processor to discover that all the avail- 
able crossing crossings had been claimed by other nets since 
the expansion phase. If this situation occurs a completely new 
global routing could be performed for the net, or a new path 
could be found from the cell where the block occurred to the 
source cell. Intelligent assignment of boundary crossing costs 
can minimize the occurrence of this problem. In our present 
algorithm there is no facility to recover from blocked bound- 
ary crossings as this problem did not occur while running the 
benchmark used to test this routing algorithm. 

After a processor has completed the global routing of all 
the nets with source points within its cell it reports to the 
host. When all the processors have completed the global 
routing phase the host initiates the next phase of the routing 
algorithm. 

3.2 Crossing Placement 

In order to decompose the routing problem into a set of in- 
dependent routing problems that can be solved in parallel, it 
is necessary for a processor and its four neighbors to decide 
on the placement of nets that cross their common boundaries. 
In a multilayer extension to this algoritm it would also be 
necessary to asign a crossing layer to each net. The cross- 
ing placement algorithm used to achieve this end embodies 
some ideas from [9]. Although fixing the crossing points is 
necessary in order to carry out the detailed routing without 
any interprocessor communication, it can restrict the solution 
space so that certain nets become unroutable. The crossing 
placement algorithm is designed to minimize this problem. 

At the completion of the global routing phase each pro- 
cessor contains a list of nets with portions within its cell, 
including nets that are completely contained within its cell, 
and the borders across which these nets pass. A strand is 
defined, as in [93, to be a connected portion of a net within 
a cell together with the boundary crossings with which this 
portion connects. These strands represent the input to the 
crossing placement algorithm. 

Initially all crossings have an undefined value outside the 
allowed range of crossing values. The crossing placement 
routine uses an iterative refinement method, in which each 
processor calculates the position of a crossing, on either its 
southern or eastern borders, based on a weighted average of 
the current position of the crossing, if it is defined, and the 
positions of the crossings as projected on the crossing border 
of strands to which the crossing is connected. The closer 
a crossing is to the one being placed the more weight it is 
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Figure 3: An example of crossing placement. 

given. Crossings on an opposite border to the crossing being 
placed are given much more weight and source and target 
points even more weight. A crossing can become defined if 
a strand connects this crossing to one or more already de- 
fined crossings. Initially only source and target points are 
defined. This scheme has the effect of giving the source and 
target endpoints even more weight in determining the cross- 
ing placement of strands connected to them. Figure 3 shows 
an example of crossing placement. In this example crossing 
C, which is to be placed, will be connected to crossings X 
and Y in the detailed routing step. X’ is the projection of 
X on the crossing border of C, and Y’ is the projection of 
Y. A new position for crossing C is computed as a weighted 
average of the positions of X’, Y’ and C. Position Y’ is 
given more weight than X’ as it is opposite C. 

Each iteration of the crossing placement algorithm consists 
of two steps. First, place all the eastern crossings and second, 
place all the southern crossings. The first step starts from the 
processors on the western border of the mesh and proceeds 
towards the east, while the second step begins with processors 
on the northern border and proceeds towards the south. After 
each net has been placed, message is sent to the appropriate 
neighbor processor with the new crossing position. At the 
completion of each step each procesor checks for strands that 
occupy the same crossing point. Any conflicts are resolved 
by moving the crossing of the strand belonging to the longer 
net to another position. The number of iterations the crossing 
placement algorithm executes is predetermined by the user. 
In practice, convergence occurs quickly, and weight given to 
crossings on opposite boundaries of a cell tend to cause the 
strands to form straight lines as one would expect. Howerver, 
conflicts may cause jogs in the wiring paths. 

Each iteration of the crossing placement algorithm gener- 
ates three messages for every crossing placement iteration. 
Thus the number of messages generated by a net, NC, during 
crossing placement is given by, 

Mc=31(m+n-2), 

where I is the number of crossing placement iterations. 

3.3 Detailed Routing 
In the final step of the parallel routing algorithm each pro- 
cessor performs the detailed routing of its cell. This is done 
using a software maze router following the algorithm outlined 
in the Introduction and using the additional idea from [lo] of 
storing the location of the wavefront grid points in a stack. 
This step is executed in parallel on all processors and requires 
no interprocessor communication. 

4 PCB Benchmark Results 

To test the parallel routing algorithm described above we have 
implemented it on a NCUBE/six hypercube with 64 processor 
nodes. The problem used is a single-layer Printed Circuit 
Board (PCB) benchmark developed by Blank in [ll]. The 
benchmark consists of routing 200 nets with an average length 
z 170 grid points in a 512 x 512 grid. 

The completed PCB routing is shown in Figure 4. Table 
1 shows the the execution times for the PCB benchmark run 
on hypercubes of order four (16 processors) and order six 
(64 processors). The time taken to load the processors with 
the routing information and the time to retrieve the finished 
result is included in the total time. From a comparison of the 
routing times (ignoring I/O time) we observe that the time for 
the order six hypercube is a roughly a factor of four reduced 
from that of the order four hypercube, this is in keeping with 
the domination of the total routing time by the detailed routing 
phase. 

Using Equations 4 and 5 with estimates for m and n to 
scale the the times for steps one and two we can extrapolate 
the results from Table 1 to obtain the routing times on higher 
order hypercubes. Estimated routing times excluding I/O time 
are shown in Table 2. Timing results for the summation of all 
three steps are shown in Figure 5. From Figure 5 we see that 
the optimum size hypercube for the PCB benchmark using 
our routing algorithm is that of order six. For hypercubes 
of larger order, the detailed routing phase time becomes in- 
significantly small while the global routing phase, which now 
dominates the total routing time, grows by a factor of four for 
each factor of four increase in cube size. Furthermore, due to 
the reduced crossing capacity of each cell with increasing hy- 
percube size there is greater possibility for boundary crossing 
blockage, as described in Section 4.1. To recover from this 
problem, should it arise, would add more time to the global 
routing phase. The times in Table 2 are best case and do not 
take into account time lost due to boundary crossing block- 
age. If a larger problem in terms of routing grid size were 
used we would continue to see speedup with larger orders of 
hypercube while at the same time reducing the possibility of 
boundary crossing blockage. 

Figure 6 is a comparison of the hypercube router and the 
Amdahl 5860 executing a serialized version of the parallel 
routing algorithm. The Amdahl had roughly 100 users when 
this benchmark was performed. The CPU times represent the 
time spent in actual computation where as the elapsed time in- 
cludes is wall-clock time and includes time spent performing 
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Hypercube Routing Time (set) 
Dimension Step 1 1 Step 2 1 Step 3 1 Total 
4-cube ( 16) 0.3 1 0.8 I 48.8 I 55.3 

1 B-cube i64j 1.6 1 1.7 1 9.1 1 22.4 

Table 1: NCUBE Routing limes for the PCB Benchmark. 

Figure 4: The PCB Benchmark. 

I/O. The elapsed time and CPU time of the parallel version 
of the routing algorithm executing on the NCUBE/six is su- 
perior to the serial version of the algorithm executing on the 
Amdahl 5860 for both 16 and 64 cells. Notice, that the case 
for 64 cells executes faster in serial. This is because the worst 
case complexity of the wavefront expansion in the detailed 
routing has been reduced by a factor of 16 and the increase 
in complexity in the other two steps has not made up for this. 
Increasing the number of cells further will eventually result 
in an increase in execution time. 

The hypercube routing algorithm was unable to complete 
ten nets yielding a completion rate of 95 % while running 
on 64 nodes. In all cases the nets were not completed due 
to poor crossing point assignment. Potential solutions to this 
problem would involve a more complex crossing placement 
algorithm or the ability to move crossings during the detailed 
routing phase. Of these two, the former is more appealing as 
it retains the separation between crossing placement and de- 
tailed routing. It is evident from Table 1 that more time could 
be devoted to crossing placement without greatly affecting the 
impressive speed of the hypercube router. 

5 Conclusions 

This paper has presented an algorithm for parallel routing on 
a hypercube parallel processor. The performance of this al- 
gorithm has been evaluated using a synthetically produced 
single layer, two-point net benchmark on an NCUBE/six hy- 

Table 2: Estimated NCUBE Routing Ties for the PCB 
Benchmark. 

ROUTING TIME VS CUBE SIZE 

4 6 8 10 
cuBEcRDER 

Figure 5: Hypercube Routing Times for the PCB Benchmark. 

ROUTINGTIME VS COMPUTER 

TIME W) 

250 

NCUBE64 NCUBE,6 AMDAHL AMDAHL 
nodes node! 5660 - 5660 - 

64 16 

COMPUTER 

Figure 6: Comparison of Routing Times for the PCB Bench- 
mark. 
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percube computer. The results are encouraging and suggest 
that a more general router based on this technique should be 
investigated. 
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