A Preliminary Investigation into Parallel Routing
on a Hypercube Computer *

O. A. Olukotun and T. N. Mudge

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, M1 48109

Abstract

This paper describes an experiment in which parallel routing
is performed on a medium grained hypercube parallel proces-
sor having 64 processing elements. Each node is a complete
32-bit computer with 128 K-bytes of memory and is con-
nected to the other nodes via a direct hypercube interconnec-
tion network. A new parallel routing algorithm was devel-
oped to exploit this parallel structure. It is a three step algo-
rithm consisting of a global routing step, a boundary crossing
placement step, and a detailed routing step. All steps can be
performed in parallel. When applied to a standard benchmark
it was able to route 95 % of the wires. The algorithm was
also executed on a large mainframe computer using the same
benchmark. The execution time was compared to that for the
hypercube. The hypercube was about three times as fast.

1 Introduction

The routing of a collection of nets (sets of points) in a cellular
grid, is one of the most computationaly difficult problems that
one encounters in the design of VLSI circuits, PCB boards,
and gate arrays. Maze routing, a technique originated by Lee
in [1] to solve this problem, produces high quality results at
the cost of long execution times and high storage requirements
on serial computers. Channel routing is a routing algorithm
that constrains the paths to predefined channels in an attempt
to reduce the high computational requirements. It can also
give good results if the number and location of the nets to
be routed match the location and size of of the predefined
channels. Usually channels are defined by the intervening
space between previously placed modules. The quality of the

*This research was supported in part by a grant from Materials Labo-
ratory, Air Force Wright Aeronautical Laboratories, Aeronautical Systems
Division (AFSC), United States Air Force, Wright-Patterson AFB, Ohio
45433-6503.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Paper 42.4
814

final layout is dependant on this prior placement. The paral-
lelism inherent in both of these routing algorithms could be
exploited by a parallel computer to provide either shorter ex-
ecution times or a higher quality result. This paper describes
a hybrid channel-maze routing algorithm suitable for parallel
processing. The algorithm is executed on a hypercube paral-
lel processor and a large mainframe and the execution times
are compared.

The problem of wire routing involves finding a path be-
tween members of a net on a cellular grid. The grid may
represent the area of a VLSI chip, a gate array or a PCB
board. Finding the best layout is, in general, a difficult (NP-
complete) problem, that is further complicated by the con-
straints of a particular technology, such as restrictions in via
position and adjacency of certain types of wires. Practical al-
gorithms used to solve the wire routing problem use heuristic
techniques with polynomial complexity that lead to near op-
timal solutions. The quality of the routing produced by such
algorithms is evaluated by total wire length, maximum length
of a net, number of vias used and overflow count (unroutable
nets).

Maze routing, a simplification of the general wire routing
problem, is a technique for finding the shortest path between
two points in a rectilinear grid. The basic algorithm originated
by Lee in [1] involves three main steps:

o Wavefront Expansion

During this step each point in the grid is labeled with
the length of the shortest path from the source to the
point. At each expansion step the wavefront consists
of labeled points, equidistant from the source, with ad-
jacent free neighbors not yet labeled. The expansion
consists of labeling these adjacent neighbors to create
a new wavefront. Obstacles such as previously routed
nets constrain the expansion of the wavefront. Wave-
front expansion continues until the target point has been
reached or there are no more grid points to expand.

o Backtrace
This step traces the shortest path, along expanded grid
points, from target to source. The path is labeled as a
new obstruction to the routing of subsequent nets.

24th ACM/IEEE Design Automation Conference

© 1987 ACM 0738-100X/87/0600-0814$00.75

o Cleanup
In this step all expanded grid points that are not part of
the new path are relabeled as free points to be used in
the routing of other nets.

The maze routing algorithm is simple and offers two major
advantages over other routing techniques. First, it guarantees
that a source to target path will be found if one exists. Second,
maze routing is flexible in the sense that routing paths can be
optimized to achieve certain objectives, such as low via usage
or low via congestion. These advantages come at the expense
of long execution times and large storage requirements. Long
execution times are due to the worst case O(L?) time com-
plexity of the wavefront expansion step for wires of length
L, and the fact that only a single net can be routed at a time.
Large storage requirements are due to the grid representation.
Furthermore, despite the maze routing algorithm’s guaranteed
path finding ability, there are no guarantees that all nets will
be routed, as the routing of a net may be blocked by a pre-
viously routed net. Despite this shortcoming, maze routing
lends itself well to the use of specialized parallel hardware to
reduce execution time by exploiting the inherent parallelism
of the wavefront expansion step. The following section ex-
amines some representative parallel hardware accelerators for
maze routing.

2 Parallel
Routing

Architectures for Maze

Due to the two dimensional nature of the maze routing prob-
lem the most common processor configuration proposed for
parallel maze routing hardware has been that of the two di-
mensional mesh of processors. However other architectures,
such as raster pipeline subarrays have also been used [2].
Most approaches to the parallelization of maze routing aim
to reduce the worst case time complexity of the time consum-
ing wavefront expansion step from O(L?) to O(L).

Examples of two dimensionat meshes are the L-machine [3]
and the SAM-machine [4]. Both of these machines are fine
grained architectures in which a simple processor node, em-
bedded in a large mesh of similar nodes, is assigned to mark
each grid position. The maze routing is implemented with a
high ratio of communication to computation at each proces-
sor and low average processor utilization. The Wire Routing
Machine (WRM) [5] possesses a more powerful node proces-
sor and a smaller mesh and so can not afford the approach
to maze routing taken by the L and SAM machines. Instead,
to take advantage of the power of the node processor, the
WRM uses a two phase routing algorithm. During the first
phase, the routing grid is divided into cells which contain a
number of grid points. A global routing from cell to cell is
then determined. In the second phase, fine track wiring is
made between grid points within the global route.

The NCUBE is an example of a general purpose par-
allel computer with a hypercube processor interconnection

topology which can accomodate up to 1024 nodes in a 10-
dimensional hypercube. A 4-dimensional hypercube is shown

Figure 1: A 4-dimensional hypercube.

in Figure 1. Each node is a powerful custom 32-bit micropro-
cessor with 128 K-bytes of memory and the ability to perform
floating point arithmetic [6]. The nodes are capable of a peak
performance of 2 MIPS and 0.5 MFLOPS. The connection
between the nodes is by dedicated point-to-point bit-serial
DMA channels. The hypercube is managed by a host proces-
sor (an Intel 80286). Our experiments were performed using
a 64 node version of the NCUBE, the NCUBE/six. We have
implemented a simple three step maze routing algorithm on
the NCUBE/six with significant speedup over the same algo-
rithm running on a large mainframe. Furthermore, due to the
power and general purpose nature of the node processors, it
is possible to implement a routing algorithm for the NCUBE
with a considerable degree of sophistication in order to im-
prove routing quality or to adapt the algorithm to a specific
technology. The speed and flexibility make the NCUBE hy-
percube both a practical and a cost-effective solution to the
maze routing problem.

3 Hypercube Maze Routing Algorithm

One of the most important aspects in parallel algorithm design
is the decomposition of the problem so that it maps efficiently
onto the parallel architecture. Typically, this requires that the
mapping does not result in the undue loading of a subset of the
processing nodes, as this imbalance would degrade the overall
performance of the algorithm. The decomposition should also
minimize the ratio of interprocessor communication time to
the computation time within the processors, as this will result
in high efficiency for the overall computation. Unfortunately,
there is no optimum solution to the decomposition of the maze
routing problem.

To decompose the maze routing problem we have chosen
the most obvious approach, which is to divide the grid into

Paper 42.4
815

as many square regions as there are node processors, N. If
the grid is A square units in area, and there are N = 2¢
nodes, where d is the dimension of the hypercube used, then
each node will be responsible for a partition or cell of the grid
containing 2%— square units. At the edges of each cell there are
crossings which connect the cell to its adjacent cells. Each
edge has a fixed capacity of crossings in which nets can be
routed. A node keeps the number of crossings available at
the eastern and southern boundaries of the cell assigned to it.
Given this decomposition of the routing problem the parallel
routing algorithm consists of the following steps:

1. Global routing.
2. Boundary crossing placement.

3. Detailed maze routing.

Each of these steps will be described in detail in the sections
that follow. The speedup of the algorithm over a conventional
maze routing algorithm rests on the fact that the above steps
can all be performed in parallel.

As noted, a 2-dimensional mesh may be mapped onto a hy-
percube connected parallel computer such as the NCUBE, and
the parallel routing algorithm described above implemented.
The algorithm does not make any use of the hypercube in-
terconnection topology beyond that of a 2-dimensional mesh,
however the preliminary work described here is intended to
set the stage for further experimentation to develop algorithms
that utilize the full power of the hypercube interconnection
scheme.

3.1 Global Routing

The first phase of the routing algorithm is a global routing
to assign nets to routing regions (cells) rather than detailed
grid points. A global routing phase should increase the rout-
ing quality by globally optimizing net placement [7]. Global
routing also serves as the first step in the decomposition of
the routing problem into N independent routing problems.
This phase requires communication among adjacent proces-
sors to perform the routing and to update the values of the
edge capacities.

The global routing phase is performed under the following
assumptions:

e all nets consist of two points (source-target points),

e all nets can be wired within their minimum global bound-
ing rectangle.

The first assumption is a simplification of the general multi-
point net routing problem, and will be relaxed in later work.
The second assumption relies on the fact that in practice most
nets are routable near their minimal lengths, and do not detour
much beyond the minimum bounding rectangle [8]. In all
cases the area enclosed by the global minimum bounding
rectangle is always greater than or equal to that of the actual
minimum bounding rectangle (see Figure 2).

Paper 42.4
816

Globat min. bounding box Min. bounding box

I

h

Figure 2: Routing grid showing cell boundaries.

If we wish to connect grid points A and B , shown in
Figure 2, that reside in a global rectangle of n units in the z-
direction and m units in the y-direction, there are Ny possible
minimum global length routes from the cell containing point
A to the cell containing point B, where G is given by

G=(n+m—2).)

n-—1

To explore these routes and find the one with the least bound-
ary crossing cost, a global expansion phase is performed,
using global routing messages, that is analogous to the wave-
front expansion step of maze routing. A global routing mes-
sage consists of seven fields, these are:

o The net number identifies which net a global route mes-
sage belongs to. :

e The source processor indicates where the message orig-
inated from.

o The destination or target processor indicates where an
expansion message should terminate.

e The direction gives the direction of the destination pro-
cessor in relation to source processor. The direction has
a field to specify the z-direction, which can have a value
of east or west, and a field for the y-direction, which can
have a value of north or south.

e The route bit vector maintains a record of the direction,
z or y, in which the message is advanced at each pro-
cessor. The bit indicated by the bit position portion of
the message is set in the route bit vector to “1” if the
message is advanced in the z-direction and “0” if the
message is advanced in the y-direction.

o The bit position identifies the current position in the route
bit vector, it is also a measure of how far, in global cells,
a message is from its origin.

e The route cost keeps a running total of the cost incurred
by the message at each boundary crossing. The cost
of crossing a cell boundary during global expansion is
computed as an inverse exponential function of the edge
capacity of the boundary.

A message also has a type associated with it. The two types
of messages used in the global routing phase are expansion
and backtrace.

The processor responsible for the cell in which the source
point of the net resides initiates the global expansion phase
by initializing the fields of a global expansion message and
sending the message to its neighboring processors contained
within the the minimum global bounding rectangle. On the
reception of an expansion message a processor compares the
source portion of the message with its processor location to
determine if it is the target processor. If the processor is not
the intended destination of the message, it adjusts the fields
of the message before advancing the expansion message to its
neighbors within the global bounding rectangle. If a processor
receives an expansion message for a net whose source does
not have either an z or y coordinate in common with the
processor’s location it waits for another message for that net
to arrive from the other direction, = or y, before advancing
the message with least cost. Once the target processor has
been reached by an expansion message from both the z and
y directions, the backtrace phase is initiated for the least cost
message.

The global backtrace phase consists of retracing the path
taken by the least cost expansion message from the source to
the target processor. To accomplish this, the direction portion
of the message is replaced with the direction of the source
processor in relation to the the target processor. The route bit
vector, scanned in the opposite direction to that used during
expansion, is used to determine in which direction, z or y, to
move in at each processor. The backtrace message traverses
the path from the target processor to the source processor
utilizing the route bit vector, the direction and the bit position
to direct its course. At each cell boundary along the backtrace
path crossings used by the net are claimed by reducing the
value of the edge capacity of the boundary by one.

The global expansion phase generates Mz messages given
by,

Mg =2mn — m —n. 2)

The backtrace phase generates Mp messages given by,
Mg=m+n—2. 3)

The total number of messages, Mg, generated for the global
routing of a two point net is, thus

MG=ME+MB=2(mn—1). 4)

Besides the transmission time, each message has associated
with it a certain amount of computation time which causes its
transmission and arises from its reception. If we assume that
any computation time that does not arise from the transmit-
ting and receiving of messages is negligible in comparison

with computation time that does, the number of messages
generated is a relative measure of the time spent during the
global routing phase.

Each processor is responsible for the global routing of nets
whose source points are contained within the processor’s cell.
A processor initiates the global routing of a net until all nets
for which it is responsible have been routed. This happens si-
multaneously in all processors. Although significant speedup
is achieved by this parallel global routing scheme, it is possi-
ble that during the backtrace phase a backtrace message may
arrive at a particular processor to discover that all the avail-
able crossing crossings had been claimed by other nets since
the expansion phase. If this situation occurs a completely new
global routing could be performed for the net, or a new path
could be found from the cell where the block occurred to the
source cell. Intelligent assignment of boundary crossing costs
can minimize the occurrence of this problem. In our present
algorithm there is no facility to recover from blocked bound-
ary crossings as this problem did not occur while running the
benchmark used to test this routing algorithm.

After a processor has completed the global routing of all
the nets with source points within its cell it reports to the
host. When all the processors have completed the global
routing phase the host initiates the next phase of the routing
algorithm.

3.2 Crossing Placement

In order to decompose the routing problem into a set of in-
dependent routing problems that can be solved in parallel, it
is necessary for a processor and its four neighbors to decide
on the placement of nets that cross their common boundaries.
In a multilayer extension to this algoritm it would also be
necessary to asign a crossing layer to each net. The cross-
ing placement algorithm used 1o achieve this end embodies
some ideas from [9]. Although fixing the crossing points is
necessary in order to carry out the detailed routing without
any interprocessor communication, it can restrict the solution
space so that certain nets become unroutable. The crossing
placement algorithm is designed to minimize this problem.

At the completion of the global routing phase each pro-
cessor contains a list of nets with portions within its cell,
including nets that are completely contained within its cell,
and the borders across which these nets pass. A strand is
defined, as in [9], to be a connected portion of a net within
a cell together with the boundary crossings with which this
portion connects. These strands represent the input to the
crossing placement algorithm.

Initially all crossings have an undefined value outside the
allowed range of crossing values. The crossing placement
routine uses an iterative refinement method, in which each
processor calculates the position of a crossing, on either its
southem or eastern borders, based on a weighted average of
the current position of the crossing, if it is defined, and the
positions of the crossings as projected on the crossing border
of strands to which the crossing is connected. The closer
a crossing is to the one being placed the more weight it is

Paper 42.4
817

<@

X'

Figure 3: An example of crossing placement.

given. Crossings on an opposite border to the crossing being
placed are given much more weight and source and target
points even more weight. A crossing can become defined if
a strand connects this crossing to one or more already de-
fined crossings. Initially only source and target points are
defined. This scheme has the effect of giving the source and
target endpoints even more weight in determining the cross-
ing placement of strands connected to them. Figure 3 shows
an example of crossing placement. In this example crossing
C, which is to be placed, will be connected to crossings X
and Y in the detailed routing step. X' is the projection of
X on the crossing border of C, and Y’ is the projection of
Y. A new position for crossing C is computed as a weighted
average of the positions of X', Y’ and C. Position Y’ is
given more weight than X' as it is opposite C.

Each iteration of the crossing placement algorithm consists
of two steps. First, place all the eastem crossings and second,
place all the southern crossings. The first step starts from the
processors on the western border of the mesh and proceeds
towards the east, while the second step begins with processors
on the northemn border and proceeds towards the south. After
each net has been placed, message is sent to the appropriate
neighbor processor with the new crossing position. At the
completion of each step each procesor checks for strands that
occupy the same crossing point. Any conflicts are resolved
by moving the crossing of the strand belonging to the longer
net to another position. The number of iterations the crossing
placement algorithm executes is predetermined by the user.
In practice, convergence occurs quickly, and weight given to
crossings on opposite boundaries of a cell tend to cause the
strands to form straight lines as one would expect. Howerver,
conflicts may cause jogs in the wiring paths.

Each iteration of the crossing placement algorithm gener-
ates three messages for every crossing placement iteration.
Thus the number of messages generated by a net, N¢, during
crossing placement is given by,

Mg =3I(m+n —2), 5)

where I is the number of crossing placement iterations.

Paper 42.4
818

3.3 Detailed Routing

In the final step of the parallel routing algorithm each pro-
cessor performs the detailed routing of its cell. This is done
using a software maze router following the algorithm outlined
in the Introduction and using the additional idea from [10] of
storing the location of the wavefront grid points in a stack.
This step is executed in parallel on all processors and requires
NO iNterprocessor communication.

4 PCB Benchmark Results

To test the parallel routing algorithm described above we have
implemented it on a NCUBE/six hypercube with 64 processor
nodes. The problem used is a single-layer Printed Circuit
Board (PCB) benchmark developed by Blank in [11]. The
benchmark consists of routing 200 nets with an average length
~ 170 grid points in a 512 x 512 grid.

The completed PCB routing is shown in Figure 4. Table
1 shows the the execution times for the PCB benchmark run
on hypercubes of order four (16 processors) and order six
(64 processors). The time taken to load the processors with
the routing information and the time to retrieve the finished
result is included in the total time. From a comparison of the
routing times (ignoring I/O time) we observe that the time for
the order six hypercube is a roughly a factor of four reduced
from that of the order four hypercube, this is in keeping with
the domination of the total routing time by the detailed routing
phase.

Using Equations 4 and 5 with estimates for m and n to
scale the the times for steps one and two we can extrapolate
the results from Table 1 to obtain the routing times on higher
order hypercubes. Estimated routing times excluding I/O time
are shown in Table 2. Timing results for the summation of all
three steps are shown in Figure 5. From Figure 5 we see that
the optimum size hypercube for the PCB benchmark using
our routing algorithm is that of order six. For hypercubes
of larger order, the detailed routing phase time becomes in-
significantly small while the global routing phase, which now
dominates the total routing time, grows by a factor of four for
each factor of four increase in cube size. Furthermore, due to
the reduced crossing capacity of each cell with increasing hy-
percube size there is greater possibility for boundary crossing
blockage, as described in Section 4.1. To recover from this
problem, should it arise, would add more time to the global
routing phase. The times in Table 2 are best case and do not
take into account time lost due to boundary crossing block-
age. If a larger problem in terms of routing grid size were
used we would continue to see speedup with larger orders of
hypercube while at the same time reducing the possibility of
boundary crossing blockage.

Figure 6 is a comparison of the hypercube router and the
Amdahl 5860 executing a serialized version of the parallel
routing algorithm. The Amdahl had roughly 100 users when
this benchmark was performed. The CPU times represent the
time spent in actual computation where as the elapsed time in-
cludes is wall-clock time and includes time spent performing

Hypercube Routing Time (sec)
Dimension Step 1 | Step 2 | Step 3 | Total
4-cube (16) 03 0.8 48.8 | 55.3
6-cube (64) 16 1.7 91 224

Table 1. NCUBE Routing Times for the PCB Benchmark.

C ﬁ—l—,—‘%_l
L ",

") 1 - A
O = B
=
d —— - T
—_}W = }
T — I ————

—— e |

pr—

Figure 4: The PCB Benchmark.

I/O. The elapsed time and CPU time of the parallel version
of the routing algorithm executing on the NCUBE/six is su-
perior to the serial version of the algorithm executing on the
Amdahl 5860 for both 16 and 64 cells. Notice, that the case
for 64 cells executes faster in serial. This is because the worst
case complexity of the wavefront expansion in the detailed
routing has been reduced by a factor of 16 and the increase
in complexity in the other two steps has not made up for this.
Increasing the number of cells further will eventually result
in an increase in execution time.

The hypercube routing algorithm was unable to complete
ten nets yielding a completion rate of 95 % while running
on 64 nodes. In all cases the nets were not completed due
to poor crossing point assignment. Potential solutions to this
problem would involve a more complex crossing placement
algorithm or the ability to move crossings during the detailed
routing phase. Of these two, the former is more appealing as
it retains the separation between crossing placement and de-
tailed routing. It is evident from Table 1 that more time could
be devoted to crossing placement without greatly affecting the
impressive speed of the hypercube router.

5 Conclusions

This paper has presented an algorithm for parallel routing on
a hypercube parallel processor. The performance of this al-
gorithm has been evaluated using a synthetically produced
single layer, two-point net benchmark on an NCUBE/six hy-

Hypercube Routing Time (sec)
Dimension Step 1| Step 2 | Step 3
8-cube (256) 6.7 3.4 2.6
10-cube (1024) 26.8 6.8 0.6

Table 2: Estimated NCUBE Routing Times for the PCB
Benchmark.

ROUTING TIME VS CUBE SIZE

N
30 \ j

TIME (sec) \ /
20 N .

10

CUBE ORDER

Figure S: Hypercube Routing Times for the PCB Benchmark.

ROUTING TIME VS COMPUTER

300 584.5

B Elapsed Time
B cruTime

250

200

TIME (sec) 150

100

50

NCUBE 64 NCUBE16 AMDAHL AMDAHL
nodes node: 5860 - 5860 -
64 16
COMPUTER

Figure 6: Comparison of Routing Times for the PCB Bench-
mark.

Paper 42.4
8i9

percube computer. The results are encouraging and suggest
that a more general router based on this technique should be
investigated.

References

(1]

(21

3]

[4]

[5]

(6]

(7

(8]

91

[10]

[11]

C. Y. Lee, “An algorithm for path connections and
its applications,” IRE Tran. on Electronic Comput-
ers, vol. EC-10, Sep. 961, pp. 346-358, 1961.

R. A. Rutenbar, T. N. Mudge and D. E. Atkins,
“A class of cellular architectures to support physical
design automation,” IEEE Tran. CAD of IC’s and
Systems, vol. CAD-3, no. 4, pp. 264-278, Oct. 1984.

M. A. Breuer and K. Shamsa, “A hardware router,”
Jour. of Digital Systems, vol. IV, issue 4, pp. 393—
408, 1981.

T. Blank, M. Stefik and W. van Cleemput, “A
parallel bit map processor architecture for DA al-
gorithms,” Proc. 18-th Design Automation Conf.,
pp. 8378453, June 1981.

S. J. Hong and R. Nair,“Wire routing machines—
New tools for VLSI physical design,” Proc. of the
IEEE, vol. 71, no. 1 pp. 57-65, Jan 1983.

J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley and
J. Palmer, “Architecture of a Hypercube Supercom-
puter,” Proc. of Int. Conf. on Parallel Processing,
pp. 653—-660, Aug. 1986.

R. A. Rutenbar, “A Class of Cellular Computer Ar-
chitectures To Support Design Automation,” Ph. D.
thesis, Dept of CICE, University of Michigan, Ann
Arbor, ML, Sep. 1984.

R. A. Ruterbar, “Systolic routing Hardware: perfor-
mance evaluation and optimization,” submitted to
IEEE Tran. CAD of IC’s and Systems.

R. L. Rivest, “The PI (placement and interconnect)
System,” Proc. 19-th Design Automation Confer-
ence, pp. 418424, 1982.

J. H. Hoel “Some variations of Lee’s algorithm,”
IEEE Trans. Computers, vol. C-25, pp. 19-24, Jan.
1976.

T. Blank, A Bit Map Architecture and Algorithms for
Design Automation, Ph. D. Thesis, Dept. of EE.,
Stanford Univ., Stanford CA, Sep. 1982.

Paper 42.4

820

